Hunters Hill High School **Extension 1, Mathematics**

Trial Examination, 2015

General Instructions

- Reading Time 5 minutes.
- Working Time 2 hours.
- Write using a blue or black pen.
- Board Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (70)

- Section I
 - 10 Marks

Attempt Questions 1-10

Section II
 60 Marks
 Attempt Questions 11-14

(10 Marks) Circle the correct response on the answer sheet provided Section I

Which of the following is the correct expression for $\int \frac{dx}{\sqrt{36-x^2}}$? 1

(A) $\cos^{-1}\frac{x}{6} + c$ (B) $\cos^{-1}6x + c$

(B)
$$\cos^{-1} 6x + c$$

(C)
$$\sin^{-1}\frac{x}{6} + c$$

(D)
$$\sin^{-1} 6x + c$$

What is the domain and range of $y = \cos^{-1}(\frac{3x}{2})$? 2

- Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$. Range: $0 \le y \le \pi$ (A)
- Domain: $-1 \le x \le 1$. Range: $0 \le y \le \pi$ (B)
- Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$. Range: $-\pi \le y \le \pi$ (C)
- Domain: $-1 \le x \le 1$. Range: $-\pi \le y \le \pi$ (D)

3 What is the solution to the inequality
$$\frac{3}{x-2} \le 4$$
?

(A)
$$x < -2 \text{ and } x \ge -\frac{11}{4}$$

(B)
$$x > -2 \text{ and } x \le -\frac{11}{4}$$

(C)
$$x < 2 \text{ and } x \ge \frac{11}{4}$$

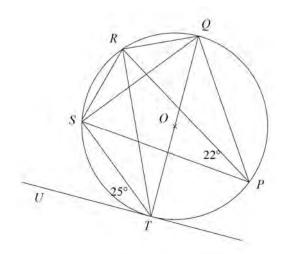
(D)
$$x > 2 \text{ and } x \le \frac{11}{4}$$

Which of the following is an expression for $\int \frac{e^x}{1+e^{2x}} dx$? 4 Use the substitution $u = e^x$.

- (B) $e^x \tan^{-1} e^{2x} + c$ $e^x \tan^{-1} e^x + c$ (A)
- (D) $\tan^{-1} e^{2x} + c$ $\tan^{-1}e^x + c$ (C)

5 How many solutions would $\sin 2\theta = \sin \theta$ have in the domain $0 \le \theta \le 360^\circ$? (A) 2 (B) 3 (C) 4 (D) 5 When g(x) is divided by $x^2 + x - 6$ the remainder is 7x + 13. 6 What is the remainder when g(x) is divided by x+3? (A) - 8 (B) -5 (C) 34 (D) 55 What is the acute angle between the lines $y - \sqrt{3}x - 6 = 0$ and $\sqrt{3}y - x + 2 = 0$? 7 (A) 30° (B) 45° (C) 60° 90° (D) Let α , β and γ be the roots of $x^3 - 4x + 1 = 0$. 8 What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$? (A) -4 (B) -1 (C) 1 4 (D)

- 9 A bowl of soup at temperature T° , when placed in a cooler environment, loses heat according to the law $\frac{dT}{dt} = k(T - T_0)$ where *t* is the time elapsed in minutes and T_0 is the temperature of the environment in degrees Celsius. A bowl of soup at 96°C is left to stand in a room at a temperature of 18°C. After 3 minutes the soup cools down to 75°C. What is the value of *k* correct to 4 decimal places?
 - (A) 0.0784
 - (B) 0.0856
 - (C) 0.1046
 - (D) 0.1236
- 10 A circle with centre *O* has a tangent *TU*, diameter *QT*, \angle STU = 25° and \angle RPS= 22°



What is the size of $\angle RTQ$?

- (A) 22°
- (B) 25°
- (C) 43°
- (D) 47°

Section II Question 11 (15 Marks)

Use a Separate Sheet of paper

(a) Using the substitution
$$u = x^2 - 2$$
, or otherwise, find $\int \frac{x}{\sqrt{x^2 - 2}} dx$. 3

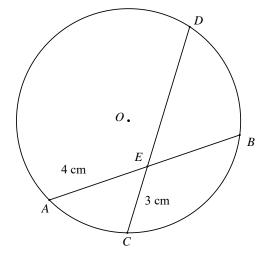
(b) Find
$$\int \sin^2 6x \, dx$$
.

(c) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The equation of the tangents at *P* and Q respectively are $y = px - ap^2$ and $y = qx - aq^2$.

(i) The tangents at *P* and *Q* meet at the point *R*. Show that the coordinates of *R* are (a(p+q), apq).

(ii) The equation of the chord *PQ* is $y = \frac{p+q}{2}x - apq$ (Do NOT show this.) If the chord *PQ* passes through (0, *a*), show that pq = -1.

- (iii) Find the equation of the locus of *R* if the chord *PQ* passes through (0, *a*)
- (d) There are eight parking spaces at the front of a motel which are all vacant at 2 pm. Two utilities and six cars arrive in the next hour and park randomly in the eight spaces. What is the probability that the two utilities park side by side?
- (e) In the circle centred at *O*, the chords *AB* and *CD* intersect at *E*. The length of *AB* is *x* cm and of *CD* is *y* cm. AE = 4 cm and CE = 3 cm.



3

Marks

2

2

1

2

2

Show that 4x = 3y + 7

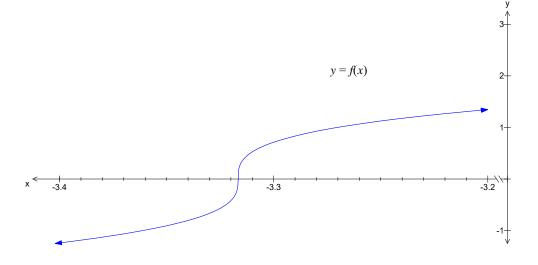
End of Question 11

Question 12 (15 Marks) Use a Separate Sheet of paper

1

(a) The point P(3, 2) divides the interval MN internally in the ratio 3 : 2. If M is the point (6, -1), find the coordinates of *N*.

(b) The curve
$$f(x) = (x^3 - 12x)^{\frac{1}{3}}$$
 is shown below.



- Find f'(x). (No need to simplify your answer.) (i)
- Taking an initial estimate of $x_1 = ?.3$, use one application of (ii) Newtons' Method to obtain another approximation to the root of f(x) = 0.
- Explain why using x = ?.3 does not produce a better approximation (iii) 1 to the root than the original estimate.

Question 12 continues on the next page

3

1

2

2

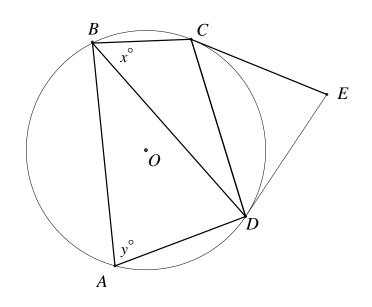
Question 12 continued

Marks

2

2

(d) The circle *ABCD* has centre *O*. Tangents are drawn from an external point *E* to contact the circle at *C* and *D*. $\angle CBD = x^{\circ}$ and $\angle BAD = y^{\circ}$.



(i) Show that $\angle CED = (180 - 2x)^{\circ}$.

(ii) Show that
$$\angle BDC = (y-x)^{\circ}$$
.

End of Question 12

3

Question 13 (15 Marks) Use a Separate Sheet of paper

(a)		elocity of a particle moving along the <i>x</i> axis, in simple harmonic on is given by:	Marks
		$v^2 = 24 + 2x - x^2$.	
	(i)	What are the endpoints of the motion?	2
	(ii)	Write an equation for the acceleration of the particle in terms of <i>x</i> .	2
	(iii)	Find the period of the motion.	1
(b)	-	ticle is moving in a straight line such that its acceleration is given $\ddot{x} = -x$.	
	(i)	Given that, when $x = 0$, $\dot{x} = 1$, show that $ \dot{x} = \sqrt{1 - x^2}$.	3
	(ii)	Given that, when $x = 0$, $t = 0$, find an expression for x in terms of t .	2

(c) (i) Using the expansion of $(1 + x)^{n-1}$ show that:

$$\binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{n-2} = 2^{n-1} - 2.$$

(ii) Find the least positive integer n, such that:

$$\binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{n-2} > 1\ 000$$
 2

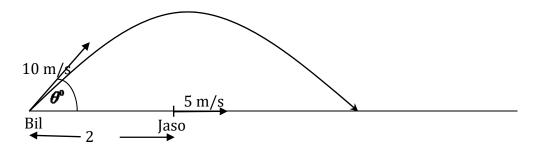
End of Question 13

Question 14 (15 Marks) Use a Separate Sheet of paper Marks Prove, using the method of mathematical induction, that $4^{n} + 14$ is (a) divisible by 6 for all $n \ge 1$. 3 (b) A spherical weather balloon is being inflated from empty using a container of helium, so that its' volume is increasing at a constant rate of 0.5 m^3 /s. (Assume the balloon maintains a spherical shape throughout inflation.) Show that the radius at a time *t* is given by $r = 3\sqrt{\frac{3t}{8\pi}}$, (i) 2 (ii) Show that the rate of increase of its surface area after 8 seconds is 3 $\sqrt[3]{\frac{\pi}{3}}$ m²/s. (iii) If the maximum safe surface area before there is a risk that the balloon will burst is 200 m², what is the maximum time that the 1

(c) Two players on a basketball court, Bill is standing on the end line with the ball ready to throw to Jason, who is moving directly towards the other end of the court, away from Bill. Jason is 2m away and running at 5m/s when Bill throws the ball in the same direction as Jason is travelling. Bill throws the ball at 10m/s and at an angle of θ^0 to the Horizontal. Assume Jason's velocity is constant, the height at which the ball is thrown and caught is identical and $g = -10m/s^2$. The equation describing the trajectory of the ball are:

inflation should be allowed to proceed?

 $\ddot{x} = 0, \dot{x} = 10\cos\theta, x = 10t\cos\theta, \ \ddot{y} = -10, \ \dot{y} = -10t + 10\sin\theta, \ y = -5t^2 + 10t\sin\theta.$



- (i) Show that $20\sin\theta\cos\theta 10\sin\theta 2 = 0$ for Jason to catch the ball.
- (ii) Using a suitable method find approximate values for θ .

3

End of Examination

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\!\left(x+\sqrt{x^2+a^2}\right)$
NOT	$E : \ln x = \log_e x, x > 0$

Hunters Hill High School

2015 TRIAL HSC EXAMINATION

Mathematics Extension 1

SOLUTIONS

Question 1		Trial HSC Examination - Mathematics Extension 1		2010	
Part	Solution		Marks	Comment	
1			С		
2			А		
3			С		
4			С		
5			D		
6			Α		
7			Α		
8			D		
9			С		
10			С		

Quest	tion 11 Trial HSC Examination - Mathematics Extension 1		2015
Part	Solution	Marks	Comment
a)	$u = x^{2} - 2$ du = 2x dx $\int \frac{x}{\sqrt{x^{2} - 2}} dx = \frac{1}{2} \int \frac{2x}{\sqrt{x^{2} - 2}} dx$	3	1 For correct method of substitution including du
	$= \frac{1}{2} \int \frac{du}{\sqrt{u}}$ $= \frac{1}{2} \int u^{-\frac{1}{2}} du$		1 for integral
	$= u^{\frac{1}{2}} + C$ $= \sqrt{x^2 - 2} + C$		
b)	$\cos 2A = 1 - 2\sin^2 A$ $2\sin^2 A = 1 - \cos 2A$ $\sin^2 A = \frac{1}{2}(1 - \cos 2A)$ $\int \sin^2 6x dx = \frac{1}{2} \int 1 - \cos 12x dx$	2	1 for transformation of the integral or recalling a formula 1 for
	$= \frac{1}{2} \left(x - \frac{1}{12} \sin 12x \right) + C$ $= \frac{x}{2} - \frac{\sin 12x}{24} + C$		integration

Ques	tion 11 Trial HSC Examination - Mathematics Extension 1		2015
Part	Solution	Marks	Comment
c) (i)	$(2aq, aq^2) Q$	2	NB Graph not needed for marks.
	Equations of tangents: $y = px - ap^2$ and $y = qx - aq^2$ To find <i>R</i> , solve simultaneously $px - ap^2 = qx - aq^2$ $px - qx = ap^2 - aq^2$		1 for reasonable attempt to solve simultaneously
	$x(p-q) = a(p+q)(p-q)$ $x = a(p+q)$ $y = p \times a(p+q) - ap^{2}$ $= ap^{2} + apq - ap^{2}$ $= apq$		1 for correct
	R is the point $(a(p+q), apq)$ Substitute $(0, a)$ into	1 marts	result.
c) (ii)	Substitute (0, a) into $y = \frac{p+q}{2}x - apq$ $a = \frac{p+q}{2} \times 0 - apq$	1 mark	
	-apq = a $pq = ?$		

Ques	tion 11 Trial HSC Examination - Mathematics Extension 1		2015
Part	Solution	Marks	Comment
c) (iii)	If chord passes through $(0, a)$ then $pq = ?$ and $p = -\frac{1}{q}$ R is the point $(a(p+q), apq)$. Which becomes $\left(a\left(-\frac{1}{q}+q\right), a \times (?)\right)$ $x = a\left(-\frac{1}{q}+q\right)$ and $y = -a$	2	1 for introducing pq = -1 to eliminate p or q
	$x = -y\left(\frac{q^2 - 1}{q}\right)$ $qx = y(1 - q^2)$ $y = \frac{qx}{1 - q^2} \text{ OR SIMILARLY } y = \frac{px}{1 - p^2}$		1 for relating <i>x</i> and <i>y</i> and obtaining the equation of the locus.
d)	There are ${}^{8}\mathbf{P}_{8}(8!)$ ways the 8 vehicles can park. If the two utes are together, treat them as one, so there are 7 vehicles. These can park in ${}^{7}\mathbf{P}_{7}(7!)$ ways with ${}^{2}\mathbf{P}_{2}(2!)$ ways of arranging the utes among themselves. So the 7 are arranged in $\frac{7!}{2!}$ ways.	2	1 for arrangement of vehicles with utes together.
	Probability = $\frac{7!}{2!} \div 8!$ = $\frac{7!}{8! 2!}$ = $\frac{1}{8 \times 2}$ = $\frac{1}{16}$		1 for probability

Question 11 Trial HSC Examination - Mathematics Extension 1		2015
Part	Solution Mar	·ks Comment
e)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$	
	Since $AB = x$, $EB = x - 4$ and since $CD = y$, $ED = y - 3$ AE. EB = CE. ED (Ratio of intercepts on chords) 4(x - 4) = 3(y - 3) 4x - 16 = 3y - 9 4x = 3y + 7	1 1 1
		15

Quest	Question 12 Trial HSC Examination - Mathematics Extension 1			
Part	Solution	Marks	Comment	
a)	let N(x,y) $\therefore \frac{3x+2(6)}{5} = 3 \qquad and \frac{3y+2(-1)}{5} = 2$ $\therefore x = 1 \qquad \qquad y = 4$	3	No need to simplify further	
b) (i)	$f(x) = (x^{3} - 12x)^{\frac{1}{3}}$ $f(x) = \frac{1}{3}(x^{3} - 12x)^{-\frac{2}{3}} \cdot (3x^{2} - 12)$	1	No need to simplify further	
b) (ii)	$x_{1} = ?.3$ $f(x_{1}) = ((?.3)^{3} - 12(?.3))^{\frac{1}{3}}$ ≈ 1.54 $f'(x_{1}) = \frac{1}{3}((?.3)^{3} - 12(?.3))^{-\frac{2}{3}} \times (3(?.3)^{2} - 12)$ ≈ 2.90	2	 1 for evaluating function and derivative. 1 for substitution into Newtons 	
b)	$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= ?.3 - \frac{1.54}{2.90}$ $\approx -3.83 (2 \text{ dec places})$ As Newtons Method uses the intercept that the tangent makes, from	1	Method formula. Mark for	
(iii)	the graph, the tangent at -3.3 is quite flat compared to the sudden drop in the curve to meet the axis. Hence the tangent would meet the axis much further along than the graph, so the second approximation is not as good as the first.		mention of the tangent meeting the axis or similar	
c) (i)	$\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ $\sin \left(x + \frac{\pi}{4}\right) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}$	2	1 correct definition	
	$= (\sin x) \times \frac{1}{\sqrt{2}} + (\cos x) \times \frac{1}{\sqrt{2}}$ $= \frac{\sin x + \cos x}{\sqrt{2}}$		1 correct evaluation	

		/15	
	$= (y - x)^{\circ}$		2 for full proof.
	= 180 - x - (180 - y) = 180 - x - 180 + y		-
	$\angle BDC = 180 - \angle CBD - \angle BCD$ $= 180 - x - (180 - y)$		partial proof.
	are supplementary) $(RDC = 180 (CRD (RCD))$		similar
d) (ii)	$\angle BCD = 180 - y^{\circ}$ (Opposite angles of cyclic quadrilateral	2	1 for cyclic quad or
4)		2	1 for evelie
	$\angle CED = 180 - \angle ECD - \angle EDC$ (Angle sum of triangle) $\angle CED = (180 - 2x)^{\circ}$		
	Hence $\angle ECD = \angle EDC = x$		
	Or $EC = ED$ (Tangents from an external point are equal)		valid proof
	Hence $\angle ECD = \angle EDC = x$		Or any other
	Similarly $\angle ECD = \angle CBD = x$		1 -
	equal to the angle in the alternate segment)		correct proof
	$\angle EDC = \angle CBD = x$ (Angle between a tangent and a chord is		completely
	A		2 for
d) (i)	$x + \frac{\pi}{4} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3} \qquad \left(\frac{\pi}{4} \le x + \frac{\pi}{4} \le \frac{9\pi}{4}\right)$ $x = \frac{\pi}{12} \text{ or } \frac{5\pi}{12} \qquad (0 \le x \le 2\pi)$ $B \qquad \qquad$	2	1 for final solution for x 1 for partially completed proof with some of the required points or with single error
			1 for final
(11)	$\sqrt{2} \qquad 2$ $\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$		$\frac{\pi}{3}$ and set.
c) (ii)	$\frac{\sin x + \cos x}{\sqrt{2}} = \frac{\sqrt{3}}{2}$	2	1 for initial solution of

Quest	tion 13 Tria	Trial HSC Examination - Mathematics Extension 1		2015
Part	Solution		Marks	Comment
a)(i)	Endpoints where $v^2 = v^2$	v = 0 24 + 2x - x ² = 0	2	•
	(6-x)(4+x) =			
()	$x = \frac{1}{2}$	$\frac{6 \text{ and } x = ?}{24 + 2x - x^2} = 0$	2	
(ii)	$v^2 =$	$24 + 2x - x^2 = 0$	2	
	Acceleration $=\frac{d}{d}$	$\frac{l}{x}\left(\frac{1}{2}v^2\right)$		
	$=\frac{d}{dt}$	$\frac{d}{dx}\left(\frac{24+2x-x^2}{2}\right)$		
	= 2	$\frac{-2x}{2}$		
	Acceleration =	1-x		
(iii)	$a = -n^2 x$		1	
	$\frac{x}{x} = 1 - x$			
	$x = ?^{2}(x-1)$			
	n = 1			
	Period $T = \frac{2\pi}{n}$			
	Period $T = 2\pi$ so	econds		

		1.	
b)	$\ddot{x} = -x$	1	
(i)	$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -x (v = \dot{x})$		
	$\frac{1}{2}v^2 = -\frac{x^2}{2} + C$		
	$\frac{1}{2}v = -\frac{1}{2}v c$		
	At $x = 0$, $\dot{x} = v = 1$		
	$\frac{1}{2}(1)^2 = 0 + C$		
	$C = \frac{1}{2}$		
	$\frac{1}{2}v^2 = -\frac{x^2}{2} + \frac{1}{2}$		
	$v^2 = 1 - x^2$		
	$ \dot{x} = \sqrt{1 - x^2}$		
	$ x = \sqrt{1-x}$		
(ii)	Let $x = a\cos(nt + \alpha)$		
(11)	a = 1 and $n = 1$		
	$x = \cos(t + \alpha)$ Let $x = a\sin(nt + \alpha)$		
	a = 1 and $n = 1$		
	x = 0, when $t = 0x = \sin(t + \alpha)$		
	$0 = \cos \alpha$ x = 0, when t = 0		
	π		
	$\alpha = \frac{\alpha}{2}$ $0 = \sin \alpha$		
	$x = \cos\left(t + \frac{\pi}{2}\right) \qquad \qquad \alpha = 0$ $x = \sin(t)$		
	$x = \cos\left(\frac{t+\frac{1}{2}}{2}\right)$ $x = \sin(t)$		
	OR		

13
(c)
(i)
(1 + x)ⁿ⁻¹ =
$$\binom{n-1}{0}$$
 1ⁿ⁻¹ + $\binom{n-1}{1}$ 1ⁿ⁻² x + $\binom{n-1}{2}$ 1ⁿ⁻³ x² +
... + $\binom{n-1}{n-2}$ 1¹ xⁿ⁻² + $\binom{n-1}{n-1}$ xⁿ⁻¹
Let x = 1
(1 + 1)ⁿ⁻¹ = $\binom{n-1}{0}$ 1ⁿ⁻¹ + $\binom{n-1}{1}$ 1ⁿ⁻² (1) + $\binom{n-1}{2}$ 1ⁿ⁻³ (1)
.... + $\binom{n-1}{n-2}$ 1¹ (1)ⁿ⁻² + $\binom{n-1}{n-1}$ (1)ⁿ⁻¹
 $\binom{n-1}{1}$ 1ⁿ⁻² (1) + $\binom{n-1}{2}$ 1ⁿ⁻³ (1)² + ...
.... + $\binom{n-1}{n-2}$ 1¹ (1)ⁿ⁻² + 2 = 2ⁿ⁻¹
 $\binom{n-1}{1}$ + $\binom{n-1}{2}$ + ...
.... + $\binom{n-1}{n-2}$ = 2ⁿ⁻¹ - 2
(ii)
2ⁿ⁻¹ - 2 > 1000
2ⁿ⁻¹ > 1002
(n-1) ln 2 > ln 1002
n-1 > 9.9
n > 10.9
Least positive integer, n = 11

Question 14		Trial HSC Examination - Mathematics Extension 1		2015
Part	Solution		Marks	Comment
a)	Show true for <i>i</i>	n = 1	3	
	$4^1 + 14 = 14 + 4$			
	$=18 = 6 \times 3$			
	\therefore true for $n = 1$	1		
	Assume true for	or $n = k$		
	$4^k + 14 = 6p$			
	Consider $n = k$	+1		
	$4^{k+1} + 14 = 4 \times 4$	$t^{k} + 14$		
	$=4\times4^{k}+4\times14$	1-3×14		
	$=4(4^{k}+14)-3$	3×14		
	$=4 \times 6 p - 6 \times 7$			
	= 6(4p-7)			
	$\therefore 4^k + 14$ is div	visible by 6		
	Hence if propo	sition is true for $n = k$		
	it is true for <i>n</i> =	= <i>k</i> + 1		
	But since true	for $n = 1$		
	by induction is	true for all $n \ge 1$		

$V =$ When $t =$ $V =$ $V =$ $\frac{t}{2} =$ $3t =$ $r^{3} =$	$= 0.5$ $= 0.5t + C$ $= 0, V = 0$ $= \frac{t}{2}$ $= \frac{4}{3}\pi r^{3}$ $= \frac{4}{3}\pi r^{3}$ $= 8\pi r^{3}$ $= 8\pi r^{3}$		Marks 2	Comment
$V =$ When $t =$ $V =$ $V =$ $\frac{t}{2} =$ $3t =$ $r^{3} =$	$= 0.5t + C$ $= 0, V = 0$ $= \frac{t}{2}$ $= \frac{4}{3}\pi r^{3}$ $= \frac{4}{3}\pi r^{3}$ $= 8\pi r^{3}$		2	
$V = \frac{t}{2} = \frac{t}{3t} = r^{3} = r^{3}$	$= \frac{4}{3} \pi r^{3}$ $= \frac{4}{3} \pi r^{3}$ $= 8\pi r^{3}$			
$r^3 =$				
r =	$= 3\sqrt{\frac{3t}{8\pi}}$			

Quest	estion 14 Trial HSC Examination - Mathematics Extension 1						
Part	Solution Ma	arks	Comment				
b) (ii)	$r = \sqrt[3]{\frac{3t}{8\pi}}$						
	$r = \left(\frac{3t}{8\pi}\right)^{\frac{1}{3}}$						
	$r = \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times t^{\frac{1}{3}}$						
	$\frac{dr}{dt} = \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{t^{-\frac{2}{3}}}{3}$						
	$A = 4\pi r^2$ $\frac{dA}{dr} = 8\pi r$						
	$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$						
	$= 8\pi r \times \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{t^{-\frac{2}{3}}}{3}$						
	$= 8 \pi \left(\left(\frac{3t}{8\pi}\right)^{\frac{1}{3}} \right) \times \left(\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{t^{-\frac{2}{3}}}{3} \right)$						
	When $t = 8$						
	$\frac{dA}{dt} = 8 \pi \left(\left(3\frac{8}{8\pi}\right)^{\frac{1}{3}} \right) \times \left(\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{(8)^{-\frac{2}{3}}}{3} \right)$						
	$= 8 \pi \times \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \times \frac{1}{2} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \times \frac{1}{12}$						
	$= \frac{\pi}{3} \left(\frac{3}{\pi}\right)^{\frac{2}{3}}$						
	$=\frac{\pi}{3}\left(\frac{\pi}{3}\right)^{-\frac{2}{3}}$						
	$=\left(\frac{\pi}{3}\right)^{\frac{1}{3}}$						
	$= 3\sqrt{\frac{\pi}{3}}$						

Ques	Question 14 Trial HSC Examination - Mathematics Extension 1			
Part	Solution		Marks	Comment
b) (iii)	$4\pi r^2 = 2$ $r^2 = \frac{5}{2}$	<u>0</u> π	1	1 for using logs or trial and error
	r = r = 3	ν π		1 for answer
	$\sqrt{\frac{50}{\pi}} = 3$	$\sqrt{\frac{3t}{8\pi}}$		
	$\left(\sqrt{\frac{50}{\pi}}\right)^6 = \left($	$\left(3\sqrt{\frac{3t}{8\pi}}\right)^{6}$		
	$\frac{125000}{\pi^3} = \frac{1}{6}$	$\frac{9t^2}{4\pi^2}$		
	$t^2 = \frac{1}{2}$	$\frac{25000}{\pi^3} \cdot \frac{64\pi^2}{9}$		
	=	$\frac{8000000}{9\pi}$		
		282 942		
		32 seconds		
	t = 8	s minutes and 52 seconds	3	
c) (i)	UN SEPAKALI		5	
c) (ii)	ON SEPARAT	E SHEETS	3	
			/15	